Papers
Topics
Authors
Recent
2000 character limit reached

Wind Field Reconstruction with Adaptive Random Fourier Features (2102.02365v1)

Published 4 Feb 2021 in math.NA, cs.NA, stat.AP, and stat.ML

Abstract: We investigate the use of spatial interpolation methods for reconstructing the horizontal near-surface wind field given a sparse set of measurements. In particular, random Fourier features is compared to a set of benchmark methods including Kriging and Inverse distance weighting. Random Fourier features is a linear model $\beta(\pmb x) = \sum_{k=1}K \beta_k e{i\omega_k \pmb x}$ approximating the velocity field, with frequencies $\omega_k$ randomly sampled and amplitudes $\beta_k$ trained to minimize a loss function. We include a physically motivated divergence penalty term $|\nabla \cdot \beta(\pmb x)|2$, as well as a penalty on the Sobolev norm. We derive a bound on the generalization error and derive a sampling density that minimizes the bound. Following (arXiv:2007.10683 [math.NA]), we devise an adaptive Metropolis-Hastings algorithm for sampling the frequencies of the optimal distribution. In our experiments, our random Fourier features model outperforms the benchmark models.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.