Papers
Topics
Authors
Recent
Search
2000 character limit reached

Algorithmic Instabilities of Accelerated Gradient Descent

Published 3 Feb 2021 in cs.LG, math.OC, and stat.ML | (2102.02167v2)

Abstract: We study the algorithmic stability of Nesterov's accelerated gradient method. For convex quadratic objectives, Chen et al. (2018) proved that the uniform stability of the method grows quadratically with the number of optimization steps, and conjectured that the same is true for the general convex and smooth case. We disprove this conjecture and show, for two notions of algorithmic stability (including uniform stability), that the stability of Nesterov's accelerated method in fact deteriorates exponentially fast with the number of gradient steps. This stands in sharp contrast to the bounds in the quadratic case, but also to known results for non-accelerated gradient methods where stability typically grows linearly with the number of steps.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.