Papers
Topics
Authors
Recent
2000 character limit reached

Occluded Video Instance Segmentation: A Benchmark

Published 2 Feb 2021 in cs.CV | (2102.01558v6)

Abstract: Can our video understanding systems perceive objects when a heavy occlusion exists in a scene? To answer this question, we collect a large-scale dataset called OVIS for occluded video instance segmentation, that is, to simultaneously detect, segment, and track instances in occluded scenes. OVIS consists of 296k high-quality instance masks from 25 semantic categories, where object occlusions usually occur. While our human vision systems can understand those occluded instances by contextual reasoning and association, our experiments suggest that current video understanding systems cannot. On the OVIS dataset, the highest AP achieved by state-of-the-art algorithms is only 16.3, which reveals that we are still at a nascent stage for understanding objects, instances, and videos in a real-world scenario. We also present a simple plug-and-play module that performs temporal feature calibration to complement missing object cues caused by occlusion. Built upon MaskTrack R-CNN and SipMask, we obtain a remarkable AP improvement on the OVIS dataset. The OVIS dataset and project code are available at http://songbai.site/ovis .

Citations (117)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.