Papers
Topics
Authors
Recent
2000 character limit reached

Order 3 symplectic automorphisms on K3 surfaces

Published 1 Feb 2021 in math.AG | (2102.01207v2)

Abstract: The aim of this paper is to generalize results known for the symplectic involutions on K3 surfaces to the order 3 symplectic automorphisms on K3 surfaces. In particular, we will explicitly describe the action induced on the lattice $\Lambda_{K3}$, isometric to the second cohomology group of a K3 surface, by a symplectic automorphism of order 3; we exhibit the maps $\pi_$ and $\pi^$ induced in cohomology by the rational quotient map $\pi:X\dashrightarrow Y$, where $X$ is a K3 surface admitting an order 3 symplectic automorphism $\sigma$ and $Y$ is the minimal resolution of the quotient $X/\sigma$; we deduce the relation between the N\'eron--Severi group of $X$ and the one of $Y$. Applying these results we describe explicit geometric examples and generalize the Shioda--Inose structures, relating Abelian surfaces admitting order 3 endomorphisms with certain specific K3 surfaces admitting particular order 3 symplectic automorphisms.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.