Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

K3 surfaces with $\mathbb{Z}_2^2$ symplectic action (1707.09732v2)

Published 31 Jul 2017 in math.AG

Abstract: Let $G$ be a finite abelian group which acts symplectically on a K3 surface. The N\'eron-Severi lattice of the projective K3 surfaces admitting $G$ symplectic action and with minimal Picard number is computed by Garbagnati and Sarti. We consider a $4$-dimensional family of projective K3 surfaces with $\mathbb{Z}_22$ symplectic action which do not fall in the above cases. If $X$ is one of these K3 surfaces, then it arises as the minimal resolution of a specific $\mathbb{Z}_23$-cover of $\mathbb{P}2$ branched along six general lines. We show that the N\'eron-Severi lattice of $X$ with minimal Picard number is generated by $24$ smooth rational curves, and that $X$ specializes to the Kummer surface $\textrm{Km}(E_i\times E_i)$. We relate $X$ to the K3 surfaces given by the minimal resolution of the $\mathbb{Z}_2$-cover of $\mathbb{P}2$ branched along six general lines, and the corresponding Hirzebruch-Kummer covering of exponent $2$ of $\mathbb{P}2$.

Summary

We haven't generated a summary for this paper yet.