Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Statistician Teaches Deep Learning (2102.01194v2)

Published 29 Jan 2021 in stat.ML, cs.CY, and cs.LG

Abstract: Deep learning (DL) has gained much attention and become increasingly popular in modern data science. Computer scientists led the way in developing deep learning techniques, so the ideas and perspectives can seem alien to statisticians. Nonetheless, it is important that statisticians become involved -- many of our students need this expertise for their careers. In this paper, developed as part of a program on DL held at the Statistical and Applied Mathematical Sciences Institute, we address this culture gap and provide tips on how to teach deep learning to statistics graduate students. After some background, we list ways in which DL and statistical perspectives differ, provide a recommended syllabus that evolved from teaching two iterations of a DL graduate course, offer examples of suggested homework assignments, give an annotated list of teaching resources, and discuss DL in the context of two research areas.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.