Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the Indecisiveness of Kelly-Strategyproof Social Choice Functions

Published 31 Jan 2021 in cs.GT and econ.TH | (2102.00499v2)

Abstract: Social choice functions (SCFs) map the preferences of a group of agents over some set of alternatives to a non-empty subset of alternatives. The Gibbard-Satterthwaite theorem has shown that only extremely restrictive SCFs are strategyproof when there are more than two alternatives. For set-valued SCFs, or so-called social choice correspondences, the situation is less clear. There are miscellaneous - mostly negative - results using a variety of strategyproofness notions and additional requirements. The simple and intuitive notion of Kelly-strategyproofness has turned out to be particularly compelling because it is weak enough to still allow for positive results. For example, the Pareto rule is strategyproof even when preferences are weak, and a number of attractive SCFs (such as the top cycle, the uncovered set, and the essential set) are strategyproof for strict preferences. In this paper, we show that, for weak preferences, only indecisive SCFs can satisfy strategyproofness. In particular, (i) every strategyproof rank-based SCF violates Pareto-optimality, (ii) every strategyproof support-based SCF (which generalize Fishburn's C2 SCFs) that satisfies Pareto-optimality returns at least one most preferred alternative of every voter, and (iii) every strategyproof non-imposing SCF returns the Condorcet loser in at least one profile. We also discuss the consequences of these results for randomized social choice.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.