Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Rates of convergence for density estimation with generative adversarial networks (2102.00199v4)

Published 30 Jan 2021 in math.ST, stat.ML, and stat.TH

Abstract: In this work we undertake a thorough study of the non-asymptotic properties of the vanilla generative adversarial networks (GANs). We prove an oracle inequality for the Jensen-Shannon (JS) divergence between the underlying density $\mathsf{p}*$ and the GAN estimate with a significantly better statistical error term compared to the previously known results. The advantage of our bound becomes clear in application to nonparametric density estimation. We show that the JS-divergence between the GAN estimate and $\mathsf{p}*$ decays as fast as $(\log{n}/n){2\beta/(2\beta + d)}$, where $n$ is the sample size and $\beta$ determines the smoothness of $\mathsf{p}*$. This rate of convergence coincides (up to logarithmic factors) with minimax optimal for the considered class of densities.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 31 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube