Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How Well Can Generative Adversarial Networks Learn Densities: A Nonparametric View (1712.08244v2)

Published 21 Dec 2017 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: We study in this paper the rate of convergence for learning densities under the Generative Adversarial Networks (GAN) framework, borrowing insights from nonparametric statistics. We introduce an improved GAN estimator that achieves a faster rate, through simultaneously leveraging the level of smoothness in the target density and the evaluation metric, which in theory remedies the mode collapse problem reported in the literature. A minimax lower bound is constructed to show that when the dimension is large, the exponent in the rate for the new GAN estimator is near optimal. One can view our results as answering in a quantitative way how well GAN learns a wide range of densities with different smoothness properties, under a hierarchy of evaluation metrics. As a byproduct, we also obtain improved generalization bounds for GAN with deeper ReLU discriminator network.

Citations (36)

Summary

We haven't generated a summary for this paper yet.