Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 197 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

PGT: Pseudo Relevance Feedback Using a Graph-Based Transformer (2101.07918v1)

Published 20 Jan 2021 in cs.IR, cs.AI, and cs.LG

Abstract: Most research on pseudo relevance feedback (PRF) has been done in vector space and probabilistic retrieval models. This paper shows that Transformer-based rerankers can also benefit from the extra context that PRF provides. It presents PGT, a graph-based Transformer that sparsifies attention between graph nodes to enable PRF while avoiding the high computational complexity of most Transformer architectures. Experiments show that PGT improves upon non-PRF Transformer reranker, and it is at least as accurate as Transformer PRF models that use full attention, but with lower computational costs.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.