Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generative and Pseudo-Relevant Feedback for Sparse, Dense and Learned Sparse Retrieval (2305.07477v1)

Published 12 May 2023 in cs.IR

Abstract: Pseudo-relevance feedback (PRF) is a classical approach to address lexical mismatch by enriching the query using first-pass retrieval. Moreover, recent work on generative-relevance feedback (GRF) shows that query expansion models using text generated from LLMs can improve sparse retrieval without depending on first-pass retrieval effectiveness. This work extends GRF to dense and learned sparse retrieval paradigms with experiments over six standard document ranking benchmarks. We find that GRF improves over comparable PRF techniques by around 10% on both precision and recall-oriented measures. Nonetheless, query analysis shows that GRF and PRF have contrasting benefits, with GRF providing external context not present in first-pass retrieval, whereas PRF grounds the query to the information contained within the target corpus. Thus, we propose combining generative and pseudo-relevance feedback ranking signals to achieve the benefits of both feedback classes, which significantly increases recall over PRF methods on 95% of experiments.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Iain Mackie (14 papers)
  2. Shubham Chatterjee (10 papers)
  3. Jeffrey Dalton (20 papers)
Citations (8)
X Twitter Logo Streamline Icon: https://streamlinehq.com