Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 163 tok/s Pro
2000 character limit reached

Unified Robust Boosting (2101.07718v3)

Published 19 Jan 2021 in stat.CO

Abstract: Boosting is a popular algorithm in supervised machine learning with wide applications in regression and classification problems. It combines weak learners, such as regression trees, to obtain accurate predictions. However, in the presence of outliers, traditional boosting may yield inferior results since the algorithm optimizes a convex loss function. Recent literature has proposed boosting algorithms that optimize robust nonconvex loss functions. Nevertheless, there is a lack of weighted estimation to indicate the outlier status of observations. This article introduces the iteratively reweighted boosting (IRBoost) algorithm, which combines robust loss optimization and weighted estimation. It can be conveniently constructed with existing software. The output includes weights as valuable diagnostics for the outlier status of observations. For practitioners interested in the boosting algorithm, the new method can be interpreted as a way to tune robust observation weights. IRBoost is implemented in the R package irboost and is demonstrated using publicly available data in generalized linear models, classification, and survival data analysis.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com