Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Let's Share VMs: Optimal Placement and Pricing across Base Stations in MEC Systems (2101.06129v1)

Published 15 Jan 2021 in cs.IT, cs.NI, cs.SY, eess.SY, and math.IT

Abstract: In mobile edge computing (MEC) systems, users offload computationally intensive tasks to edge servers at base stations. However, with unequal demand across the network, there might be excess demand at some locations and underutilized resources at other locations. To address such load-unbalanced problem in MEC systems, in this paper we propose virtual machines (VMs) sharing across base stations. Specifically, we consider the joint VM placement and pricing problem across base stations to match demand and supply and maximize revenue at the network level. To make this problem tractable, we decompose it into master and slave problems. For the placement master problem, we propose a Markov approximation algorithm MAP on the design of a continuous time Markov chain. As for the pricing slave problem, we propose OPA - an optimal VM pricing auction, where all users are truthful. Furthermore, given users' potential untruthful behaviors, we propose an incentive compatible auction iCAT along with a partitioning mechanism PUFF, for which we prove incentive compatibility and revenue guarantees. Finally, we combine MAP and OPA or PUFF to solve the original problem, and analyze the optimality gap. Simulation results show that collaborative base stations increases revenue by up to 50%.

Citations (20)

Summary

We haven't generated a summary for this paper yet.