Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 35 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 234 tok/s Pro
2000 character limit reached

Continual Learning of Knowledge Graph Embeddings (2101.05850v2)

Published 14 Jan 2021 in cs.RO and cs.LG

Abstract: In recent years, there has been a resurgence in methods that use distributed (neural) representations to represent and reason about semantic knowledge for robotics applications. However, while robots often observe previously unknown concepts, these representations typically assume that all concepts are known a priori, and incorporating new information requires all concepts to be learned afresh. Our work relaxes this limiting assumption of existing representations and tackles the incremental knowledge graph embedding problem by leveraging the principles of a range of continual learning methods. Through an experimental evaluation with several knowledge graphs and embedding representations, we provide insights about trade-offs for practitioners to match a semantics-driven robotics applications to a suitable continual knowledge graph embedding method.

Citations (44)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube