Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mining the Relationship Between COVID-19 Sentiment and Market Performance (2101.02587v3)

Published 6 Jan 2021 in econ.GN, q-fin.EC, and q-fin.ST

Abstract: At the beginning of the COVID-19 outbreak in March, we observed one of the largest stock market crashes in history. Within the months following this, a volatile bullish climb back to pre-pandemic performances and higher. In this paper, we study the stock market behavior during the initial few months of the COVID-19 pandemic in relation to COVID-19 sentiment. Using text sentiment analysis of Twitter data, we look at tweets that contain key words in relation to the COVID-19 pandemic and the sentiment of the tweet to understand whether sentiment can be used as an indicator for stock market performance. There has been previous research done on applying natural language processing and text sentiment analysis to understand the stock market performance, given how prevalent the impact of COVID-19 is to the economy, we want to further the application of these techniques to understand the relationship that COVID-19 has with stock market performance. Our findings show that there is a strong relationship to COVID-19 sentiment derived from tweets that could be used to predict stock market performance in the future.

Citations (7)

Summary

We haven't generated a summary for this paper yet.