Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model Extraction and Defenses on Generative Adversarial Networks (2101.02069v1)

Published 6 Jan 2021 in cs.CR, cs.CV, and cs.LG

Abstract: Model extraction attacks aim to duplicate a machine learning model through query access to a target model. Early studies mainly focus on discriminative models. Despite the success, model extraction attacks against generative models are less well explored. In this paper, we systematically study the feasibility of model extraction attacks against generative adversarial networks (GANs). Specifically, we first define accuracy and fidelity on model extraction attacks against GANs. Then we study model extraction attacks against GANs from the perspective of accuracy extraction and fidelity extraction, according to the adversary's goals and background knowledge. We further conduct a case study where an adversary can transfer knowledge of the extracted model which steals a state-of-the-art GAN trained with more than 3 million images to new domains to broaden the scope of applications of model extraction attacks. Finally, we propose effective defense techniques to safeguard GANs, considering a trade-off between the utility and security of GAN models.

Citations (14)

Summary

We haven't generated a summary for this paper yet.