On the Approximation Relationship between Optimizing Ratio of Submodular (RS) and Difference of Submodular (DS) Functions (2101.01631v2)
Abstract: We demonstrate that from an algorithm guaranteeing an approximation factor for the ratio of submodular (RS) optimization problem, we can build another algorithm having a different kind of approximation guarantee -- weaker than the classical one -- for the difference of submodular (DS) optimization problem, and vice versa. We also illustrate the link between these two problems by analyzing a \textsc{Greedy} algorithm which approximately maximizes objective functions of the form $\Psi(f,g)$, where $f,g$ are two non-negative, monotone, submodular functions and $\Psi$ is a {quasiconvex} 2-variables function, which is non decreasing with respect to the first variable. For the choice $\Psi(f,g)\triangleq f/g$, we recover RS, and for the choice $\Psi(f,g)\triangleq f-g$, we recover DS. To the best of our knowledge, this greedy approach is new for DS optimization. For RS optimization, it reduces to the standard \textsc{GreedRatio} algorithm that has already been analyzed previously. However, our analysis is novel for this case.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.