Papers
Topics
Authors
Recent
2000 character limit reached

Deterministic & Adaptive Non-Submodular Maximization via the Primal Curvature

Published 22 Feb 2017 in cs.DS and cs.DM | (1702.07002v2)

Abstract: While greedy algorithms have long been observed to perform well on a wide variety of problems, up to now approximation ratios have only been known for their application to problems having submodular objective functions $f$. Since many practical problems have non-submodular $f$, there is a critical need to devise new techniques to bound the performance of greedy algorithms in the case of non-submodularity. Our primary contribution is the introduction of a novel technique for estimating the approximation ratio of the greedy algorithm for maximization of monotone non-decreasing functions based on the curvature of $f$ without relying on the submodularity constraint. We show that this technique reduces to the classical $(1 - 1/e)$ ratio for submodular functions. Furthermore, we develop an extension of this ratio to the adaptive greedy algorithm, which allows applications to non-submodular stochastic maximization problems. This notably extends support to applications modeling incomplete data with uncertainty.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.