Papers
Topics
Authors
Recent
2000 character limit reached

Combining Semilattices and Semimodules

Published 29 Dec 2020 in cs.CL and math.LO | (2012.14778v3)

Abstract: We describe the canonical weak distributive law $\delta \colon \mathcal S \mathcal P \to \mathcal P \mathcal S$ of the powerset monad $\mathcal P$ over the $S$-left-semimodule monad $\mathcal S$, for a class of semirings $S$. We show that the composition of $\mathcal P$ with $\mathcal S$ by means of such $\delta$ yields almost the monad of convex subsets previously introduced by Jacobs: the only difference consists in the absence in Jacobs's monad of the empty convex set. We provide a handy characterisation of the canonical weak lifting of $\mathcal P$ to $\mathbb{EM}(\mathcal S)$ as well as an algebraic theory for the resulting composed monad. Finally, we restrict the composed monad to finitely generated convex subsets and we show that it is presented by an algebraic theory combining semimodules and semilattices with bottom, which are the algebras for the finite powerset monad $\mathcal P_f$.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.