Papers
Topics
Authors
Recent
Search
2000 character limit reached

Semialgebras and Weak Distributive Laws

Published 25 Jun 2021 in cs.LO and math.CT | (2106.13489v3)

Abstract: Motivated by recent work on weak distributive laws and their applications to coalgebraic semantics, we investigate the algebraic nature of semialgebras for a monad. These are algebras for the underlying functor of the monad subject to the associativity axiom alone-the unit axiom from the definition of an Eilenberg-Moore algebras is dropped. We prove that if the underlying category has coproducts, then semialgebras for a monad M are in fact the Eilenberg-Moore algebras for a suitable monad structure on the functor id + M , which we call the semifree monad Ms. We also provide concrete algebraic presentations for semialgebras for the maybe monad, the semigroup monad and the finite distribution monad. A second contribution is characterizing the weak distributive laws of the form M T => T M as strong distributive laws Ms T => T Ms subject to an additional condition.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.