Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
Gemini 2.5 Pro Premium
46 tokens/sec
GPT-5 Medium
16 tokens/sec
GPT-5 High Premium
17 tokens/sec
GPT-4o
95 tokens/sec
DeepSeek R1 via Azure Premium
90 tokens/sec
GPT OSS 120B via Groq Premium
461 tokens/sec
Kimi K2 via Groq Premium
212 tokens/sec
2000 character limit reached

Metadynamics sampling in atomic environment space for collecting training data for machine learning potentials (2012.13266v1)

Published 24 Dec 2020 in physics.comp-ph

Abstract: The universal mathematical form of machine-learning potentials (MLPs) shifts the core of development of interatomic potentials to collecting proper training data. Ideally, the training set should encompass diverse local atomic environments but the conventional approach is prone to sampling similar configurations repeatedly, mainly due to the Boltzmann statistics. As such, practitioners handpick a large pool of distinct configurations manually, stretching the development period significantly. Herein, we suggest a novel sampling method optimized for gathering diverse yet relevant configurations semi-automatically. This is achieved by applying the metadynamics with the descriptor for the local atomic environment as a collective variable. As a result, the simulation is automatically steered toward unvisited local environment space such that each atom experiences diverse chemical environments without redundancy. We apply the proposed metadynamics sampling to H:Pt(111), GeTe, and Si systems. Throughout the examples, a small number of metadynamics trajectories can provide reference structures necessary for training high-fidelity MLPs. By proposing a semi-automatic sampling method tuned for MLPs, the present work paves the way to wider applications of MLPs to many challenging applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.