Papers
Topics
Authors
Recent
2000 character limit reached

Functionally-fitted energy-preserving methods for solving oscillatory nonlinear Hamiltonian systems

Published 24 Dec 2020 in math.NA and cs.NA | (2012.13066v1)

Abstract: In the last few decades, numerical simulation for nonlinear oscillators has received a great deal of attention, and many researchers have been concerned with the design and analysis of numerical methods for solving oscillatory problems. In this paper, from the perspective of the continuous finite element method, we propose and analyze new energy-preserving functionally fitted methods, in particular trigonometrically fitted methods of an arbitrarily high order for solving oscillatory nonlinear Hamiltonian systems with a fixed frequency. To implement these new methods in a widespread way, they are transformed into a class of continuous-stage Runge--Kutta methods. This paper is accompanied by numerical experiments on oscillatory Hamiltonian systems such as the FPU problem and nonlinear Schr\"odinger equation. The numerical results demonstrate the remarkable accuracy and efficiency of our new methods compared with the existing high-order energy-preserving methods in the literature.

Citations (50)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.