Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geometric two-scale integrators for highly oscillatory system: uniform accuracy and near conservations (2110.15265v1)

Published 28 Oct 2021 in math.NA and cs.NA

Abstract: In this paper, we consider a class of highly oscillatory Hamiltonian systems which involve a scaling parameter $\varepsilon\in(0,1]$. The problem arises from many physical models in some limit parameter regime or from some time-compressed perturbation problems. The solution of the model exhibits rapid temporal oscillations with $\mathcal{O}(1)$-amplitude and $\mathcal{O}(1/\varepsilon)$-frequency, which makes classical numerical methods inefficient. We apply the two-scale formulation approach to the problem and propose two new time-symmetric numerical integrators. The methods are proved to have the uniform second order accuracy for all $\varepsilon$ at finite times and some near-conservation laws in long times. Numerical experiments on a H\'{e}non-Heiles model, a nonlinear Schr\"{o}dinger equation and a charged-particle system illustrate the performance of the proposed methods over the existing ones.

Citations (11)

Summary

We haven't generated a summary for this paper yet.