Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Limitation of Acyclic Oriented Graphs Matching as Cell Tracking Accuracy Measure when Evaluating Mitosis (2012.12084v1)

Published 22 Dec 2020 in cs.CV, eess.IV, and q-bio.QM

Abstract: Multi-object tracking (MOT) in computer vision and cell tracking in biomedical image analysis are two similar research fields, whose common aim is to achieve instance level object detection/segmentation and associate such objects across different video frames. However, one major difference between these two tasks is that cell tracking also aim to detect mitosis (cell division), which is typically not considered in MOT tasks. Therefore, the acyclic oriented graphs matching (AOGM) has been used as de facto standard evaluation metrics for cell tracking, rather than directly using the evaluation metrics in computer vision, such as multiple object tracking accuracy (MOTA), ID Switches (IDS), ID F1 Score (IDF1) etc. However, based on our experiments, we realized that AOGM did not always function as expected for mitosis events. In this paper, we exhibit the limitations of evaluating mitosis with AOGM using both simulated and real cell tracking data.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.