Ego-Motion Aware Target Prediction Module for Robust Multi-Object Tracking (2404.03110v1)
Abstract: Multi-object tracking (MOT) is a prominent task in computer vision with application in autonomous driving, responsible for the simultaneous tracking of multiple object trajectories. Detection-based multi-object tracking (DBT) algorithms detect objects using an independent object detector and predict the imminent location of each target. Conventional prediction methods in DBT utilize Kalman Filter(KF) to extrapolate the target location in the upcoming frames by supposing a constant velocity motion model. These methods are especially hindered in autonomous driving applications due to dramatic camera motion or unavailable detections. Such limitations lead to tracking failures manifested by numerous identity switches and disrupted trajectories. In this paper, we introduce a novel KF-based prediction module called the Ego-motion Aware Target Prediction (EMAP) module by focusing on the integration of camera motion and depth information with object motion models. Our proposed method decouples the impact of camera rotational and translational velocity from the object trajectories by reformulating the Kalman Filter. This reformulation enables us to reject the disturbances caused by camera motion and maximizes the reliability of the object motion model. We integrate our module with four state-of-the-art base MOT algorithms, namely OC-SORT, Deep OC-SORT, ByteTrack, and BoT-SORT. In particular, our evaluation on the KITTI MOT dataset demonstrates that EMAP remarkably drops the number of identity switches (IDSW) of OC-SORT and Deep OC-SORT by 73% and 21%, respectively. At the same time, it elevates other performance metrics such as HOTA by more than 5%. Our source code is available at https://github.com/noyzzz/EMAP.
- W. Luo, J. Xing, A. Milan, X. Zhang, W. Liu, and T.-K. Kim, “Multiple object tracking: A literature review,” Artificial Intelligence, vol. 293, p. 103448, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0004370220301958
- C. Badue, R. Guidolini, R. V. Carneiro, P. Azevedo, V. B. Cardoso, A. Forechi, L. Jesus, R. Berriel, T. M. Paixão, F. Mutz, L. d. P. Veronese, T. Oliveira-Santos, and A. F. D. Souza, “Self-driving cars: A survey,” Expert Systems with Applications, vol. 165, p. 113816, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S095741742030628X
- P. Bergmann, T. Meinhardt, and L. Leal-Taixe, “Tracking Without Bells and Whistles,” in 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE, Oct. 2019, pp. 941–951. [Online]. Available: https://ieeexplore.ieee.org/document/9010033/
- A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online and realtime tracking,” in 2016 IEEE International Conference on Image Processing (ICIP), Sep. 2016, pp. 3464–3468, iSSN: 2381-8549.
- P. Dendorfer, H. Rezatofighi, A. Milan, J. Q. Shi, D. Cremers, I. Reid, S. Roth, K. Schindler, and L. Leal-Taix’e, “MOT20: A benchmark for multi object tracking in crowded scenes,” ArXiv, Mar. 2020.
- A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti vision benchmark suite,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2012.
- A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An open urban driving simulator,” in Proceedings of the 1st Annual Conference on Robot Learning, 2017, pp. 1–16.
- Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan, P. Luo, W. Liu, and X. Wang, “ByteTrack: Multi-object Tracking by Associating Every Detection Box,” in Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXII. Berlin, Heidelberg: Springer-Verlag, Oct. 2022, pp. 1–21.
- J. Cao, J. Pang, X. Weng, R. Khirodkar, and K. Kitani, “Observation-Centric SORT: Rethinking SORT for Robust Multi-Object Tracking,” in 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, BC, Canada: IEEE, Jun. 2023, pp. 9686–9696. [Online]. Available: https://ieeexplore.ieee.org/document/10204818/
- Y. Du, Z. Zhao, Y. Song, Y. Zhao, F. Su, T. Gong, and H. Meng, “StrongSORT: Make DeepSORT Great Again,” Feb. 2023, arXiv:2202.13514 [cs]. [Online]. Available: http://arxiv.org/abs/2202.13514
- N. Wojke, A. Bewley, and D. Paulus, “Simple Online and Realtime Tracking with a Deep Association Metric,” Mar. 2017, arXiv:1703.07402 [cs].
- S. Han, P. Huang, H. Wang, E. Yu, D. Liu, and X. Pan, “MAT: Motion-aware multi-object tracking,” Neurocomputing, vol. 476, no. C, pp. 75–86, Mar. 2022. [Online]. Available: https://doi.org/10.1016/j.neucom.2021.12.104
- G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics YOLO,” Jan. 2023. [Online]. Available: https://github.com/ultralytics/ultralytics
- M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient object detection,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 10 778–10 787.
- T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” in 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2999–3007.
- A. Sadeghian, A. Alahi, and S. Savarese, “Tracking the Untrackable: Learning to Track Multiple Cues with Long-Term Dependencies,” in 2017 IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, Oct. 2017, pp. 300–311. [Online]. Available: http://ieeexplore.ieee.org/document/8237303/
- A. Milan, S. H. Rezatofighi, A. Dick, I. Reid, and K. Schindler, “Online multi-target tracking using recurrent neural networks,” in Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, ser. AAAI’17. San Francisco, California, USA: AAAI Press, Feb. 2017, pp. 4225–4232.
- N. L. Baisa, “Occlusion-robust online multi-object visual tracking using a GM-PHD filter with CNN-based re-identification,” Journal of Visual Communication and Image Representation, vol. 80, p. 103279, Oct. 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1047320321001814
- Q. Liu, D. Chen, Q. Chu, L. Yuan, B. Liu, L. Zhang, and N. Yu, “Online multi-object tracking with unsupervised re-identification learning and occlusion estimation,” Neurocomputing, vol. 483, pp. 333–347, Apr. 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S092523122200008X
- L. Zheng, Z. Bie, Y. Sun, J. Wang, C. Su, S. Wang, and Q. Tian, “Mars: A video benchmark for large-scale person re-identification,” in Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VI 14. Springer, 2016, pp. 868–884.
- B.-N. Vo and W.-K. Ma, “The Gaussian mixture probability hypothesis density filter,” IEEE Transactions on Signal Processing, vol. 54, no. 11, pp. 4091–4104, 2006.
- G. Wang, Y. Wang, H. Zhang, R. Gu, and J.-N. Hwang, “Exploit the Connectivity: Multi-Object Tracking with TrackletNet,” in Proceedings of the 27th ACM International Conference on Multimedia. Nice France: ACM, Oct. 2019, pp. 482–490. [Online]. Available: https://dl.acm.org/doi/10.1145/3343031.3350853
- H. Liu, T. Xu, and X. Wu, “MMOT: Motion-Aware Multi-Object Tracking with Optical Flow,” in Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition. Beijing China: ACM, Nov. 2022, pp. 115–120. [Online]. Available: https://dl.acm.org/doi/10.1145/3581807.3581824
- B. Shuai, A. Berneshawi, X. Li, D. Modolo, and J. Tighe, “SiamMOT: Siamese Multi-Object Tracking,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA: IEEE, Jun. 2021, pp. 12 367–12 377.
- K.-C. Huang, M.-H. Yang, and Y.-H. Tsai, “Delving into motion-aware matching for monocular 3d object tracking,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 6909–6918.
- G. D. Evangelidis and E. Z. Psarakis, “Parametric Image Alignment Using Enhanced Correlation Coefficient Maximization,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 10, pp. 1858–1865, Oct. 2008, conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence. [Online]. Available: https://ieeexplore.ieee.org/document/4515873
- P. Tokmakov, J. Li, W. Burgard, and A. Gaidon, “Learning to track with object permanence,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 10 860–10 869.
- J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779–788.
- M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source Robot Operating System,” in IEEE International Conference on Robotics and Automation Workshop on Open Source Software, 2009.
- J. Luiten, A. Ossep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixe, and B. Leibe, “HOTA: A Higher Order Metric for Evaluating Multi-object Tracking,” International Journal of Computer Vision, vol. 129, no. 2, pp. 548–578, Feb. 2021. [Online]. Available: https://link.springer.com/10.1007/s11263-020-01375-2
- G. Maggiolino, A. Ahmad, J. Cao, and K. Kitani, “Deep OC-SORT: Multi-Pedestrian Tracking by Adaptive Re-Identification,” Feb. 2023, arXiv:2302.11813 [cs]. [Online]. Available: http://arxiv.org/abs/2302.11813
- N. Aharon, R. Orfaig, and B.-Z. Bobrovsky, “BoT-SORT: Robust Associations Multi-Pedestrian Tracking,” Jul. 2022, arXiv:2206.14651 [cs]. [Online]. Available: http://arxiv.org/abs/2206.14651
- Navid Mahdian (1 paper)
- Mohammad Jani (2 papers)
- Amir M. Soufi Enayati (6 papers)
- Homayoun Najjaran (40 papers)