Papers
Topics
Authors
Recent
2000 character limit reached

xRAI: Explainable Representations through AI

Published 10 Dec 2020 in cs.AI and cs.LG | (2012.06006v1)

Abstract: We present xRAI an approach for extracting symbolic representations of the mathematical function a neural network was supposed to learn from the trained network. The approach is based on the idea of training a so-called interpretation network that receives the weights and biases of the trained network as input and outputs the numerical representation of the function the network was supposed to learn that can be directly translated into a symbolic representation. We show that interpretation nets for different classes of functions can be trained on synthetic data offline using Boolean functions and low-order polynomials as examples. We show that the training is rather efficient and the quality of the results are promising. Our work aims to provide a contribution to the problem of better understanding neural decision making by making the target function explicit

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.