Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Symbolic Neural Network Representation and its Application to Understanding, Verifying, and Patching Networks (1908.06223v2)

Published 17 Aug 2019 in cs.LG, cs.PL, and stat.ML

Abstract: Analysis and manipulation of trained neural networks is a challenging and important problem. We propose a symbolic representation for piecewise-linear neural networks and discuss its efficient computation. With this representation, one can translate the problem of analyzing a complex neural network into that of analyzing a finite set of affine functions. We demonstrate the use of this representation for three applications. First, we apply the symbolic representation to computing weakest preconditions on network inputs, which we use to exactly visualize the advisories made by a network meant to operate an aircraft collision avoidance system. Second, we use the symbolic representation to compute strongest postconditions on the network outputs, which we use to perform bounded model checking on standard neural network controllers. Finally, we show how the symbolic representation can be combined with a new form of neural network to perform patching; i.e., correct user-specified behavior of the network.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube