Papers
Topics
Authors
Recent
2000 character limit reached

Preprocessing noisy functional data: a multivariate perspective

Published 10 Dec 2020 in stat.ME and stat.ML | (2012.05824v2)

Abstract: We consider functional data which are measured on a discrete set of observation points. Often such data are measured with additional noise. We explore in this paper the factor structure underlying this type of data. We show that the latent signal can be attributed to the common components of a corresponding factor model and can be estimated accordingly, by borrowing methods from factor model literature. We also show that principal components, which play a key role in functional data analysis, can be accurately estimated after taking such a multivariate instead of a `functional' perspective. In addition to the estimation problem, we also address testing of the null-hypothesis of iid noise. While this assumption is largely prevailing in the literature, we believe that it is often unrealistic and not supported by a residual analysis.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.