Papers
Topics
Authors
Recent
2000 character limit reached

On the estimation of the number of components in multivariate functional principal component analysis

Published 8 Nov 2023 in stat.ME and stat.ML | (2311.04540v3)

Abstract: Happ and Greven (2018) developed a methodology for principal components analysis of multivariate functional data observed on different dimensional domains. Their approach relies on an estimation of univariate functional principal components for each univariate functional feature. In this paper, we present extensive simulations to investigate choosing the number of principal components to retain. We show empirically that the conventional approach of using a percentage of variance explained threshold for each univariate functional feature may be unreliable when aiming to explain an overall percentage of variance in the multivariate functional data, and thus we advise practitioners to exercise caution.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.