Papers
Topics
Authors
Recent
2000 character limit reached

Approximate Cross-validated Mean Estimates for Bayesian Hierarchical Regression Models

Published 29 Nov 2020 in stat.ML, cs.LG, and stat.CO | (2011.14238v4)

Abstract: We introduce a novel procedure for obtaining cross-validated predictive estimates for Bayesian hierarchical regression models (BHRMs). Bayesian hierarchical models are popular for their ability to model complex dependence structures and provide probabilistic uncertainty estimates, but can be computationally expensive to run. Cross-validation (CV) is therefore not a common practice to evaluate the predictive performance of BHRMs. Our method circumvents the need to re-run computationally costly estimation methods for each cross-validation fold and makes CV more feasible for large BHRMs. By conditioning on the variance-covariance parameters, we shift the CV problem from probability-based sampling to a simple and familiar optimization problem. In many cases, this produces estimates which are equivalent to full CV. We provide theoretical results and demonstrate its efficacy on publicly available data and in simulations.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.