Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Blocked Cross-Validation: A Precise and Efficient Method for Hyperparameter Tuning (2306.06591v2)

Published 11 Jun 2023 in cs.LG and stat.ME

Abstract: Hyperparameter tuning plays a crucial role in optimizing the performance of predictive learners. Cross--validation (CV) is a widely adopted technique for estimating the error of different hyperparameter settings. Repeated cross-validation (RCV) has been commonly employed to reduce the variability of CV errors. In this paper, we introduce a novel approach called blocked cross-validation (BCV), where the repetitions are blocked with respect to both CV partition and the random behavior of the learner. Theoretical analysis and empirical experiments demonstrate that BCV provides more precise error estimates compared to RCV, even with a significantly reduced number of runs. We present extensive examples using real--world data sets to showcase the effectiveness and efficiency of BCV in hyperparameter tuning. Our results indicate that BCV outperforms RCV in hyperparameter tuning, achieving greater precision with fewer computations.

Summary

We haven't generated a summary for this paper yet.