Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Reinforcement Learning for Resource Constrained Multiclass Scheduling in Wireless Networks (2011.13634v3)

Published 27 Nov 2020 in cs.LG, cs.IT, cs.NI, and math.IT

Abstract: The problem of resource constrained scheduling in a dynamic and heterogeneous wireless setting is considered here. In our setup, the available limited bandwidth resources are allocated in order to serve randomly arriving service demands, which in turn belong to different classes in terms of payload data requirement, delay tolerance, and importance/priority. In addition to heterogeneous traffic, another major challenge stems from random service rates due to time-varying wireless communication channels. Various approaches for scheduling and resource allocation can be used, ranging from simple greedy heuristics and constrained optimization to combinatorics. Those methods are tailored to specific network or application configuration and are usually suboptimal. To this purpose, we resort to deep reinforcement learning (DRL) and propose a distributional Deep Deterministic Policy Gradient (DDPG) algorithm combined with Deep Sets to tackle the aforementioned problem. Furthermore, we present a novel way to use a Dueling Network, which leads to further performance improvement. Our proposed algorithm is tested on both synthetic and real data, showing consistent gains against state-of-the-art conventional methods from combinatorics, optimization, and scheduling metrics.

Citations (5)

Summary

We haven't generated a summary for this paper yet.