Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Reinforcement Learning for Radio Resource Allocation (2203.03906v2)

Published 8 Mar 2022 in cs.LG, cs.SY, and eess.SY

Abstract: Deep reinforcement learning (DRL) for resource allocation has been investigated extensively owing to its ability of handling model-free and end-to-end problems. Yet the high training complexity of DRL hinders its practical use in dynamic wireless systems. To reduce the training cost, we resort to graph reinforcement learning for exploiting two kinds of relational priors inherent in many problems in wireless communications: topology information and permutation properties. To design graph reinforcement learning framework systematically for harnessing the two priors, we first conceive a method to transform state matrix into state graph, and then propose a general method for graph neural networks to satisfy desirable permutation properties. To demonstrate how to apply the proposed methods, we take deep deterministic policy gradient (DDPG) as an example for optimizing two representative resource allocation problems. One is predictive power allocation that minimizes the energy consumed for ensuring the quality-ofservice of each user that requests video streaming. The other is link scheduling that maximizes the sum-rate for device-to-device communications. Simulation results show that the graph DDPG algorithm converges much faster and needs much lower space complexity than existing DDPG algorithms to achieve the same learning performance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. Z. Zhang, Y. Yang, M. Hua et al., “Proactive caching for vehicular multi-view 3D video streaming via deep reinforcement learning,” IEEE Trans. Commun., vol. 18, no. 5, pp. 2693–2706, 2019.
  2. J. Zhang, Y. Huang, J. Wang, and X. You, “Intelligent beam training for millimeter-wave communications via deep reinforcement learning,” IEEE GLOBECOM, 2019.
  3. D. Liu, J. Zhao, and C. Yang, “Energy-saving predictive video streaming with deep reinforcement learning,” IEEE GLOBECOM, 2019.
  4. A. Khan and R. Adve, “Centralized and distributed deep reinforcement learning methods for downlink sum-rate optimization,” IEEE Trans. Commun., vol. 19, no. 12, pp. 8410–8426, 2020.
  5. K. Feng, Q. Wang, X. Li et al., “Deep reinforcement learning based intelligent reflecting surface optimization for MISO communication systems,” IEEE Wireless Commun. Lett., vol. 9, no. 5, pp. 745–749, 2020.
  6. A. Kasgari, W. Saad, M. Mozaffari et al., “Experienced deep reinforcement learning with generative adversarial networks (GANs) for model-free ultra reliable low latency communications,” IEEE Trans. Commun., vol. 69, no. 2, pp. 884–899, 2021.
  7. M. Alsenwi, N. Tran, M. Bennis et al., “Intelligent resource slicing for eMBB and URLLC coexistence in 5G and beyond: A deep reinforcement learning based approach,” IEEE Trans. Commun., vol. 20, no. 7, pp. 4585–4600, 2021.
  8. S. Wang, T. Lv, W. Ni et al., “Joint resource management for MC-NOMA: A deep reinforcement learning approach,” IEEE Trans. Commun., vol. 20, no. 9, pp. 5672–5688, 2021.
  9. V. Zambaldi, D. Raposo, A. Santoro et al., “Relational deep reinforcement learning,” arXiv preprint, 2018. [Online]. Available: https://arxiv.org/pdf/1806.01830.pdf
  10. P. Battaglia, J. Hamrick, V. Bapst et al., “Relational inductive biases, deep learning, and graph networks,” arXiv preprint, 2018. [Online]. Available: https://arxiv.org/pdf/1806.01261.pdf
  11. M. Eisen and A. Ribeiro, “Optimal wireless resource allocation with random edge graph neural networks,” IEEE Trans. Signal Process., vol. 68, no. 10, pp. 2977–2991, 2020.
  12. J. Guo and C. Yang, “Learning power allocation for multi-cell-multi-user systems with heterogeneous graph neural network,” IEEE Trans. Commun., vol. 21, no. 2, pp. 884–897, 2022.
  13. C. V. N. Index, “Global mobile data traffic forecast update, 2017–2022,” Cisco white paper, 2019.
  14. N. Bui and J. Widmer, “Data-driven evaluation of anticipatory networking in LTE networks,” IEEE Trans. Mobile Comput., vol. 17, no. 10, pp. 2252–2265, 2018.
  15. M. Lee, G. Yu, and G. Li, “Graph embedding-based wireless link scheduling with few training samples,” IEEE Trans. Commun., vol. 20, no. 4, pp. 2282–2294, 2020.
  16. Y. Shen, Y. Shi, J. Zhang et al., “Graph neural networks for scalable radio resource management: Architecture design and theoretical analysis,” IEEE J. Sel. Areas Commun., vol. 39, no. 1, pp. 101–115, 2020.
  17. T. Jiang, H. Cheng, and W. Yu, “Learning to reflect and to beamform for intelligent reflecting surface with implicit channel estimation,” IEEE J. Sel. Areas Commun., vol. 39, no. 7, pp. 1931–1945, 2021.
  18. B. Zhao, J. Guo, and C. Yang, “Learning precoding policy: CNN or GNN?” IEEE WCNC, 2022.
  19. T. Chen, X. Zhang, M. You et al., “A GNN-based supervised learning framework for resource allocation in wireless IoT networks,” IEEE Internet Things J., vol. 9, no. 3, pp. 1712–1724, 2022.
  20. Z. Zhang, T. Jiang, and W. Yu, “Learning based user scheduling in reconfigurable intelligent surface assisted multiuser downlink,” IEEE J. Sel. Topics Signal Process., vol. 16, no. 5, pp. 1026–1039, 2022.
  21. V. Ranasinghe, N. Rajatheva, and M. Latva-aho, “Graph neural network based access point selection for cell-free massive MIMO systems,” IEEE GLOBECOM, 2021.
  22. X. Zhang, H. Zhao, J. Xiong et al., “Scalable power control/beamforming in heterogeneous wireless networks with graph neural networks,” IEEE GLOBECOM, 2021.
  23. K. Nakashima, S. Kamiya, K. Ohtsu et al., “Deep reinforcement learning-based channel allocation for wireless LANs with graph convolutional networks,” IEEE Access, vol. 8, pp. 31 823–31 834, 2020.
  24. O. Orhan, V. Swamy, T. Tetzlaff et al., “Connection management xAPP for O-RAN RIC: A graph neural network and reinforcement learning approach,” IEEE ICMLA, 2021.
  25. P. Sun, J. Lan, J. Li et al., “Combining deep reinforcement learning with graph neural networks for optimal VNF placement,” IEEE Commun. Lett., vol. 25, no. 1, pp. 176–180, 2021.
  26. C. Yang, Y. Xiao, Y. Zhang et al., “Heterogeneous network representation learning: A unified framework with survey and benchmark,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 10, pp. 4854–4873, 2020.
  27. J. Del Rosario and G. Fox, “Constant bit rate network transmission of variable bit rate continuous media in video-on-demand servers,” Multimed. Tools. Appl., vol. 2, pp. 215–232, 1996.
  28. S. Wang, S. Bi, and Y.-J. Zhang, “Deep reinforcement learning with communication transformer for adaptive live streaming in wireless edge networks,” IEEE J. Sel. Areas Commun., vol. 40, no. 1, pp. 308–322, 2022.
  29. Q. Lan, B. Lv, R. Wang et al., “Adaptive video streaming for massive MIMO networks via approximate MDP and reinforcement learning,” IEEE Trans. Wireless Commun., vol. 19, no. 9, pp. 5716–5731, 2020.
  30. Z. Lu and G. Veciana, “Optimizing stored video delivery for wireless networks: The value of knowing the future,” IEEE Trans. Multimedia, vol. 21, no. 1, pp. 197–210, 2019.
  31. C. She and C. Yang, “Energy efficient resource allocation for hybrid services with future channel gains,” IEEE Trans. Green Commun. Netw., vol. 4, no. 1, pp. 165–179, 2020.
  32. R. Atawia, H. Hassanein, N. Abu et al., “Utilization of stochastic modeling for green predictive video delivery under network uncertainties,” IEEE Trans. on Green Commun. Netw., vol. 2, no. 2, pp. 556–569, 2018.
  33. D. Liu, J. Zhao, C. Yang et al., “Accelerating deep reinforcement learning with the aid of partial model: Energy-efficient predictive video streaming,” IEEE Trans. Wireless Commun., vol. 20, no. 6, pp. 3734–3748, 2021.
  34. K. Shen and W. Yu, “FPLinQ: A cooperative spectrum sharing strategy for device-to-device communications,” IEEE ISIT, 2017.
  35. S. Ravanbakhsh, J. Schneider, and B. Poczos, “Equivariance through parameter-sharing,” PLMR ICML, 2017.
  36. T. Lillicrap, J. Hunt, A. Pritzel et al., “Continuous control with deep reinforcement learning,” ICLR, 2015.
  37. D. Kirkpatrick, “Determining graph properties from matrix representations,” ACM STOC, 1974.
  38. H. Fathy, S. Bortoff, G. Copeland et al., “Nested optimization of an elevator and its gain-scheduled LQG controller,” ASME IMECE, 2002.
  39. G. Dalal, K. Dvijotham, M. Vecerik et al., “Safe exploration in continuous action spaces,” arXiv preprint, 2018. [Online]. Available: https://arxiv.org/pdf/1801.08757.pdf
  40. Z. Wu, S. Pan, F. Chen et al., “A comprehensive survey on graph neural networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 1, pp. 4–24, 2021.
  41. N. Aschenbruck, R. Ernst, E. Gerhards-Padilla et al., “Bonnmotion: A mobility scenario generation and analysis tool,” 2010.
  42. D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” ICLR, 2014.
  43. S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” PLMR ICML, 2015.

Summary

We haven't generated a summary for this paper yet.