Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 73 tok/s
Gemini 3.0 Pro 52 tok/s
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 202 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

AutoGraph: Automated Graph Neural Network (2011.11288v1)

Published 23 Nov 2020 in cs.LG, cs.AI, and cs.SI

Abstract: Graphs play an important role in many applications. Recently, Graph Neural Networks (GNNs) have achieved promising results in graph analysis tasks. Some state-of-the-art GNN models have been proposed, e.g., Graph Convolutional Networks (GCNs), Graph Attention Networks (GATs), etc. Despite these successes, most of the GNNs only have shallow structure. This causes the low expressive power of the GNNs. To fully utilize the power of the deep neural network, some deep GNNs have been proposed recently. However, the design of deep GNNs requires significant architecture engineering. In this work, we propose a method to automate the deep GNNs design. In our proposed method, we add a new type of skip connection to the GNNs search space to encourage feature reuse and alleviate the vanishing gradient problem. We also allow our evolutionary algorithm to increase the layers of GNNs during the evolution to generate deeper networks. We evaluate our method in the graph node classification task. The experiments show that the GNNs generated by our method can obtain state-of-the-art results in Cora, Citeseer, Pubmed and PPI datasets.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.