Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

SReachTools Kernel Module: Data-Driven Stochastic Reachability Using Hilbert Space Embeddings of Distributions (2011.10610v2)

Published 20 Nov 2020 in math.OC, cs.SY, and eess.SY

Abstract: We present algorithms for performing data-driven stochastic reachability as an addition to SReachTools, an open-source stochastic reachability toolbox. Our method leverages a class of machine learning techniques known as kernel embeddings of distributions to approximate the safety probabilities for a wide variety of stochastic reachability problems. By representing the probability distributions of the system state as elements in a reproducing kernel Hilbert space, we can learn the "best fit" distribution via a simple regularized least-squares problem, and then compute the stochastic reachability safety probabilities as simple linear operations. This technique admits finite sample bounds and has known convergence in probability. We implement these methods as part of SReachTools, and demonstrate their use on a double integrator system, on a million-dimensional repeated planar quadrotor system, and a cart-pole system with a black-box neural network controller.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.