Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximate Stochastic Reachability for High Dimensional Systems (1910.10818v3)

Published 23 Oct 2019 in eess.SY, cs.SY, and math.OC

Abstract: We present a method to compute the stochastic reachability safety probabilities for high-dimensional stochastic dynamical systems. Our approach takes advantage of a nonparametric learning technique known as conditional distribution embeddings to model the stochastic kernel using a data-driven approach. By embedding the dynamics and uncertainty within a reproducing kernel Hilbert space, it becomes possible to compute the safety probabilities for stochastic reachability problems as simple matrix operations and inner products. We employ a convergent approximation technique, random Fourier features, in order to alleviate the increased computational requirements for high-dimensional systems. This technique avoids the curse of dimensionality, and enables the computation of safety probabilities for high-dimensional systems without prior knowledge of the structure of the dynamics or uncertainty. We validate this approach on a double integrator system, and demonstrate its capabilities on a million-dimensional, nonlinear, non-Gaussian, repeated planar quadrotor system.

Citations (1)

Summary

We haven't generated a summary for this paper yet.