Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strict Enforcement of Conservation Laws and Invertibility in CNN-Based Super Resolution for Scientific Datasets (2011.05586v2)

Published 11 Nov 2020 in eess.IV and cs.CV

Abstract: Recently, deep Convolutional Neural Networks (CNNs) have revolutionized image super-resolution (SR), dramatically outperforming past methods for enhancing image resolution. They could be a boon for the many scientific fields that involve image or gridded datasets: satellite remote sensing, radar meteorology, medical imaging, numerical modeling etc. Unfortunately, while SR-CNNs produce visually compelling outputs, they may break physical conservation laws when applied to scientific datasets. Here, a method for ``Downsampling Enforcement" in SR-CNNs is proposed. A differentiable operator is derived that, when applied as the final transfer function of a CNN, ensures the high resolution outputs exactly reproduce the low resolution inputs under 2D-average downsampling while improving performance of the SR schemes. The method is demonstrated across seven modern CNN-based SR schemes on several benchmark image datasets, and applications to weather radar, satellite imager, and climate model data are also shown. The approach improves training time and performance while ensuring physical consistency between the super-resolved and low resolution data.

Citations (4)

Summary

We haven't generated a summary for this paper yet.