Dirichlet policies for reinforced factor portfolios
Abstract: This article aims to combine factor investing and reinforcement learning (RL). The agent learns through sequential random allocations which rely on firms' characteristics. Using Dirichlet distributions as the driving policy, we derive closed forms for the policy gradients and analytical properties of the performance measure. This enables the implementation of REINFORCE methods, which we perform on a large dataset of US equities. Across a large range of parametric choices, our result indicates that RL-based portfolios are very close to the equally-weighted (1/N) allocation. This implies that the agent learns to be agnostic with regard to factors, which can partly be explained by cross-sectional regressions showing a strong time variation in the relationship between returns and firm characteristics.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.