Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model-Free Reinforcement Learning for Asset Allocation (2209.10458v1)

Published 21 Sep 2022 in q-fin.PM and cs.LG

Abstract: Asset allocation (or portfolio management) is the task of determining how to optimally allocate funds of a finite budget into a range of financial instruments/assets such as stocks. This study investigated the performance of reinforcement learning (RL) when applied to portfolio management using model-free deep RL agents. We trained several RL agents on real-world stock prices to learn how to perform asset allocation. We compared the performance of these RL agents against some baseline agents. We also compared the RL agents among themselves to understand which classes of agents performed better. From our analysis, RL agents can perform the task of portfolio management since they significantly outperformed two of the baseline agents (random allocation and uniform allocation). Four RL agents (A2C, SAC, PPO, and TRPO) outperformed the best baseline, MPT, overall. This shows the abilities of RL agents to uncover more profitable trading strategies. Furthermore, there were no significant performance differences between value-based and policy-based RL agents. Actor-critic agents performed better than other types of agents. Also, on-policy agents performed better than off-policy agents because they are better at policy evaluation and sample efficiency is not a significant problem in portfolio management. This study shows that RL agents can substantially improve asset allocation since they outperform strong baselines. On-policy, actor-critic RL agents showed the most promise based on our analysis.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Adebayo Oshingbesan (5 papers)
  2. Eniola Ajiboye (1 paper)
  3. Peruth Kamashazi (1 paper)
  4. Timothy Mbaka (1 paper)
Citations (1)

Summary

We haven't generated a summary for this paper yet.