Papers
Topics
Authors
Recent
2000 character limit reached

A Q-learning algorithm for discrete-time linear-quadratic control with random parameters of unknown distribution: convergence and stabilization (2011.04970v1)

Published 10 Nov 2020 in math.OC and math.PR

Abstract: This paper studies an infinite horizon optimal control problem for discrete-time linear systems and quadratic criteria, both with random parameters which are independent and identically distributed with respect to time. A classical approach is to solve an algebraic Riccati equation that involves mathematical expectations and requires certain statistical information of the parameters. In this paper, we propose an online iterative algorithm in the spirit of Q-learning for the situation where only one random sample of parameters emerges at each time step. The first theorem proves the equivalence of three properties: the convergence of the learning sequence, the well-posedness of the control problem, and the solvability of the algebraic Riccati equation. The second theorem shows that the adaptive feedback control in terms of the learning sequence stabilizes the system as long as the control problem is well-posed. Numerical examples are presented to illustrate our results.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.