Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Smoothness of densities for path-dependent SDEs under Hörmander's condition (2011.04089v2)

Published 8 Nov 2020 in math.PR

Abstract: We establish the existence of smooth densities for solutions to a broad class of path-dependent SDEs under a H\"ormander-type condition. The classical scheme based on the reduced Malliavin matrix turns out to be unavailable in the path-dependent context. We approach the problem by lifting the given $n$-dimensional path-dependent SDE into a suitable $L_p$-type Banach space in such a way that the lifted Banach-space-valued equation becomes a state-dependent reformulation of the original SDE. We then formulate H\"ormander's bracket condition in $\mathbb Rn$ for non-anticipative SDE coefficients defining the Lie brackets in terms of vertical derivatives in the sense of the functional It^o calculus. Our pathway to the main result engages an interplay between the analysis of SDEs in Banach spaces, Malliavin calculus, and rough path techniques.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.