Papers
Topics
Authors
Recent
2000 character limit reached

Smoothness and asymptotic estimates of densities for SDEs with locally smooth coefficients and applications to square root-type diffusions

Published 23 Aug 2011 in math.PR | (1108.4558v1)

Abstract: We study smoothness of densities for the solutions of SDEs whose coefficients are smooth and nondegenerate only on an open domain $D$. We prove that a smooth density exists on $D$ and give upper bounds for this density. Under some additional conditions (mainly dealing with the growth of the coefficients and their derivatives), we formulate upper bounds that are suitable to obtain asymptotic estimates of the density for large values of the state variable ("tail" estimates). These results specify and extend some results by Kusuoka and Stroock [J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32 (1985) 1--76], but our approach is substantially different and based on a technique to estimate the Fourier transform inspired from Fournier [Electron. J. Probab. 13 (2008) 135--156] and Bally [Integration by parts formula for locally smooth laws and applications to equations with jumps I (2007) The Royal Swedish Academy of Sciences]. This study is motivated by existing models for financial securities which rely on SDEs with non-Lipschitz coefficients. Indeed, we apply our results to a square root-type diffusion (CIR or CEV) with coefficients depending on the state variable, that is, a situation where standard techniques for density estimation based on Malliavin calculus do not apply. We establish the existence of a smooth density, for which we give exponential estimates and study the behavior at the origin (the singular point).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.