Papers
Topics
Authors
Recent
Search
2000 character limit reached

Cooperative and Stochastic Multi-Player Multi-Armed Bandit: Optimal Regret With Neither Communication Nor Collisions

Published 8 Nov 2020 in cs.LG, cs.MA, and stat.ML | (2011.03896v1)

Abstract: We consider the cooperative multi-player version of the stochastic multi-armed bandit problem. We study the regime where the players cannot communicate but have access to shared randomness. In prior work by the first two authors, a strategy for this regime was constructed for two players and three arms, with regret $\tilde{O}(\sqrt{T})$, and with no collisions at all between the players (with very high probability). In this paper we show that these properties (near-optimal regret and no collisions at all) are achievable for any number of players and arms. At a high level, the previous strategy heavily relied on a $2$-dimensional geometric intuition that was difficult to generalize in higher dimensions, while here we take a more combinatorial route to build the new strategy.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.