Papers
Topics
Authors
Recent
2000 character limit reached

A Practical Algorithm for Multiplayer Bandits when Arm Means Vary Among Players

Published 4 Feb 2019 in stat.ML and cs.LG | (1902.01239v4)

Abstract: We study a multiplayer stochastic multi-armed bandit problem in which players cannot communicate, and if two or more players pull the same arm, a collision occurs and the involved players receive zero reward. We consider the challenging heterogeneous setting, in which different arms may have different means for different players, and propose a new and efficient algorithm that combines the idea of leveraging forced collisions for implicit communication and that of performing matching eliminations. We present a finite-time analysis of our algorithm, giving the first sublinear minimax regret bound for this problem, and prove that if the optimal assignment of players to arms is unique, our algorithm attains the optimal $O(\ln(T))$ regret, solving an open question raised at NeurIPS 2018.

Citations (61)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.