Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discretization of learned NETT regularization for solving inverse problems (2011.03627v2)

Published 6 Nov 2020 in math.NA and cs.NA

Abstract: Deep learning based reconstruction methods deliver outstanding results for solving inverse problems and are therefore becoming increasingly important. A recently invented class of learning-based reconstruction methods is the so-called NETT (for Network Tikhonov Regularization), which contains a trained neural network as regularizer in generalized Tikhonov regularization. The existing analysis of NETT considers fixed operator and fixed regularizer and analyzes the convergence as the noise level in the data approaches zero. In this paper, we extend the frameworks and analysis considerably to reflect various practical aspects and take into account discretization of the data space, the solution space, the forward operator and the neural network defining the regularizer. We show the asymptotic convergence of the discretized NETT approach for decreasing noise levels and discretization errors. Additionally, we derive convergence rates and present numerical results for a limited data problem in photoacoustic tomography.

Citations (8)

Summary

We haven't generated a summary for this paper yet.