Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Augmented NETT Regularization of Inverse Problems (1908.03006v3)

Published 8 Aug 2019 in math.NA, cs.LG, cs.NA, and math.OC

Abstract: We propose aNETT (augmented NETwork Tikhonov) regularization as a novel data-driven reconstruction framework for solving inverse problems. An encoder-decoder type network defines a regularizer consisting of a penalty term that enforces regularity in the encoder domain, augmented by a penalty that penalizes the distance to the data manifold. We present a rigorous convergence analysis including stability estimates and convergence rates. For that purpose, we prove the coercivity of the regularizer used without requiring explicit coercivity assumptions for the networks involved. We propose a possible realization together with a network architecture and a modular training strategy. Applications to sparse-view and low-dose CT show that aNETT achieves results comparable to state-of-the-art deep-learning-based reconstruction methods. Unlike learned iterative methods, aNETT does not require repeated application of the forward and adjoint models, which enables the use of aNETT for inverse problems with numerically expensive forward models. Furthermore, we show that aNETT trained on coarsely sampled data can leverage an increased sampling rate without the need for retraining.

Citations (3)

Summary

We haven't generated a summary for this paper yet.