Papers
Topics
Authors
Recent
2000 character limit reached

IMEX Runge-Kutta Parareal for Non-Diffusive Equations

Published 3 Nov 2020 in math.NA and cs.NA | (2011.01604v2)

Abstract: Parareal is a widely studied parallel-in-time method that can achieve meaningful speedup on certain problems. However, it is well known that the method typically performs poorly on non-diffusive equations. This paper analyzes linear stability and convergence for IMEX Runge-Kutta Parareal methods on non-diffusive equations. By combining standard linear stability analysis with a simple convergence analysis, we find that certain Parareal configurations can achieve parallel speedup on non-diffusive equations. These stable configurations all posses low iteration counts, large block sizes, and a large number of processors. Numerical examples using the nonlinear Schrodinger equation demonstrate the analytical conclusions.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.