Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Impact of spatial coarsening on Parareal convergence (2111.10228v1)

Published 19 Nov 2021 in math.NA, cs.CE, and cs.NA

Abstract: We study the impact of spatial coarsening on the convergence of the Parareal algorithm, both theoretically and numerically. For initial value problems with a normal system matrix, we prove a lower bound for the Euclidean norm of the iteration matrix. When there is no physical or numerical diffusion, an immediate consequence is that the norm of the iteration matrix cannot be smaller than unoty as soon as the coarse problem has fewer degrees-of-freedom than the fine. This prevents a theoretical guarantee for monotonic convergence, which is necessary to obtain meaningful speedups. For diffusive problems, in the worst-case where the iteration error contracts only as fast as the powers of the iteration matrix norm, making Parareal as accurate as the fine method will take about as many iterations as there are processors, making meaningful speedup impossible. Numerical examples with a non-normal system matrix show that for diffusive problems good speedup is possible, but that for non-diffusive problems the negative impact of spatial coarsening on convergence is big.

Summary

We haven't generated a summary for this paper yet.