Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Inductive Bias of Gradient Descent for Weight Normalized Smooth Homogeneous Neural Nets (2010.12909v3)

Published 24 Oct 2020 in cs.LG and stat.ML

Abstract: We analyze the inductive bias of gradient descent for weight normalized smooth homogeneous neural nets, when trained on exponential or cross-entropy loss. We analyse both standard weight normalization (SWN) and exponential weight normalization (EWN), and show that the gradient flow path with EWN is equivalent to gradient flow on standard networks with an adaptive learning rate. We extend these results to gradient descent, and establish asymptotic relations between weights and gradients for both SWN and EWN. We also show that EWN causes weights to be updated in a way that prefers asymptotic relative sparsity. For EWN, we provide a finite-time convergence rate of the loss with gradient flow and a tight asymptotic convergence rate with gradient descent. We demonstrate our results for SWN and EWN on synthetic data sets. Experimental results on simple datasets support our claim on sparse EWN solutions, even with SGD. This demonstrates its potential applications in learning neural networks amenable to pruning.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.