Adaptive Pixel-wise Structured Sparse Network for Efficient CNNs (2010.11083v3)
Abstract: To accelerate deep CNN models, this paper proposes a novel spatially adaptive framework that can dynamically generate pixel-wise sparsity according to the input image. The sparse scheme is pixel-wise refined, regional adaptive under a unified importance map, which makes it friendly to hardware implementation. A sparse controlling method is further presented to enable online adjustment for applications with different precision/latency requirements. The sparse model is applicable to a wide range of vision tasks. Experimental results show that this method efficiently improve the computing efficiency for both image classification using ResNet-18 and super resolution using SRResNet. On image classification task, our method can save 30%-70% MACs with a slightly drop in top-1 and top-5 accuracy. On super resolution task, our method can reduce more than 90% MACs while only causing around 0.1 dB and 0.01 decreasing in PSNR and SSIM. Hardware validation is also included.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.